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Abstract
We all know the views of very high tower-swing-cranes erected in the near of building sites. A very important 
parameter concerning the security of operation is the security factor of standing (SF) (Equations in the appendix).  
The ground base is normally a platform of about 6 - 8 m in square.  The torques acting on the pillar can be 
computed by the sum of vertical weights and strengths with the corresponding distance from the axis of the crane.
All the vertical strengths and the resulting torques must be computed and added.
The resulting distance (e) from the centre of the axis of rotation of the crane is:                               .
This value must fulfil a security condition, e.g. it must be always lower than the half width of the outer dimension of  
the platform. (M means the sum of moments and V the sum of vertical strengths.)
The new idea is the adjustment of the torque moment of the counterweight so that the relevant distance (e) is equal 
to zero. To do this, the distance (e4) of the counterweight must be controlled by a computer so that the pillar has to  
bear no bending moment any longer. Therefore the bending of the pillar will be measured by a laser fastened at the 
top of the pillar. The 550 nm light ray is adjusted parallel to the pillar and will be detected by a linear CCD-array 
on the base platform of the crane. Any strength which will bend the pillar causes a new adjustment of the position 
of the counterweight so that the belonging torque moment to the pillar will become zero (e=0). 
The result is a very secure operation of the crane. The loading capacity was improved very much. This includes a 
better handling in the case of stormy weather, too. Another advantage is that the height of the load keeps constant 
during the transportation because the changing torque moment is compensated every time. 
A physical model was implemented to evaluate the reached improvements. The technical solution for controlling 
the position of the counterweight very secure will be given in the paper.
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Introduction
This paper is a wonderful example for creative modelling. 
The process starts with an observation. You are standing at 
a building site and you are watching the crane during it 
works. You can win two valuable information:
1. If the load will be lifted up the pillar of the crane is 

bending (depending of the distance between the load 
and the pillar).

2. If  the  crab  moves,  the  height  of  the  load  will  vary 
(low, if the distance is large).

The analysis of the observed disadvantages results in the 
fact  that  the  crane  has  no  bending-free  pillar.  The 
estimated  value  of  the  bending  of  a  50m high  pillar  is 
about  1  m.  It  is  relative  low,  but  the  effect  will  be 
multiplied  by  the  very  long  jib  of  the  crane.  These 
changing  moments  stressing  the  pillar  have  several 
additional  disadvantages,  e.g.  the  large  stress  of  the 
transmission gear for the rotation of the crane. In any case 
the security  of  load-transportation is  reduced because  of 
the fact that the centre of gravity is not identical with the 
centre of the pillar. That could be important if total load is 

depending on the weights which are to be transported and 
the wind load if there is stormy weather.
In  the  German  DIN  1054  the  maximum  allowable 
difference between the gravity and axial centre is given. In 
figure 1 one can see a rhombic area in which the gravity 
centre is allowed to move during operation.

Figure 1: Tolerance region for the centre of gravity /1/
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The new idea is that it must be possible to make the pillar 
of  the  crane  free  of  bending  moments.  There  are  two 
possibilities; first the counterweight of the crane (normally 
a fixed value in a given crane) must be variable. This is not 
realizable.  Second,  that  is  an  alternative  solution,  is  to 
adjust the counter-moment by the variation of the spacing 
of  a  fixed  counterweight.  It  is  very  dangerous  to  move 
heavy weights in 50m height. It must be sure even if the 
electrical power would have a failure. A worm drive as a 
mechanical  moving  system is  very  sure  because  of  the 
large  blocking  moment  against  displacements  which  are 
caused by the counterweight.
In the described solution the counterweight is divided in 
two  parts  which  can  swing  laterally  at  the  two  sides 
synchronically. With this construction the counter-moment 
can  be  varied  proportionally.  The  angular  adjustment 
between  the  two  counter-jibs  is  to  be  controlled  by  a 
negative feedback system so that the bending moment of 
the crane pillar is zero. The bending of the pillar can be 
measured by a laser beam which is fastened at the top of 
the crane. At the bottom the laser point must be parallel to 
the axis of the pillar.
To  proof  the  effectiveness  of  the  feedback  system  a 
physical model is necessary simulating a real tower-swing-
crane.

The simulated crane
The  simulated  crane  is  a  small  model  of  the  MAN 
Wolffkran,  model:  7031  FL6  V10.  The  reason  for  this 
election was only the very good documented data on the 
internet  page of MAN Wolffkran. You can find that the 
pillar  composed  by  11  elements  with  a  total  mass  of 
24,460kg. All geometrical data are given for the unloaded 
case. That is the reason that we need an observed value for 
the  maximum bending  of  the  pillar  in  the  maximum of 
height.

Type: 7031 FL6 V10

Jib-length: 60 m
max. height of the top: 55 m
base dimensions: 8 m in square, 

weight: 50 t 
counterweight: 22.2 t
total weight: 140 t
max. hook-weight: 6.2 t

Figure 2: MAN Wolffkran 7031 FL6 V10 /2/

Condition for the torque-free pillar
In figure 3 the condition for a torque-free pillar is given. If 
the load FL with its distance A1 and the counterweight FG is 
given, then the necessary distance A2 can be computed so 

that  the  sum of  moments  is  zero.  The  feedback  system 
controls this distance A2 by a stepper-motor and a spindle 
driving so that the condition is fulfilled.
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Figure 3: Principle of torque-free pillar

This condition is not depending on the size, but lengths and 
forces are depending by scaling factors.

The scaling factors of the physical model
There are some values which are scale-invariant.

„Two structural parts are mechanically equivalent in their 
elastic features if their Hooke number HO is identical. “ /3/

The condition is given by:
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with the indices:  “OR” for  the original  and “M” for  the 
model, 
E: Elastic modulus, L: Length
rL: Scale factor of lengths, rF: Scale factor of forces
In  the  case  of  identical  material  properties  EM =  EOR it 
follows that the scale factors for lengths and forces are:
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The maximum load torque of the model is ML = 49.52 Nm.
(= 6190 kNm of the original crane divided by 50 * 2500)
This  load  torque  ML must  be  counterbalanced  by  the 
adjustable  counter-moment  MG.  Including  a  security 
amount of 20% the counter-moment should be: 
MG = -60Nm.
This counter-moment could be implemented by a 0.50 m 
long lever and a 12 kg mass at the end of it.
By  the  maximum  load  the  bending  of  the  top  of  the 
original  crane is  approximately:  f  = 1m. The equivalent 
value for the model is: f = 0.02m = 2 cm.



If  the  variable  counter-moment  is  in  its  50% position a 
maximum  load  moment  would  bend  the  model  pillar 
because of a resulting moment of +20 Nm. 
In the model a steel-profile with a rectangular cross-section 
was used to simulate the original bar construction nearly 
exactly.

Block-diagram of the total system with a 
negative feedback-control
In figure 4 are shown the components of the whole system. 
Because of the bending of the pillar the laser beam meets 
at a displacement of p besides the axis of the pillar. This 
value  p  must  be  zero  for  the  best  possible  solution. 
Therefore  the  µC  controls  the  counter-moment  by  the 
movement of the stepper-motor so that the laser beam hits 
the CCD-linear-sensor at the zero-position.

Figure 4: System overview

The sensory for the torque-free pillar
Figure 5 describes  the applied technique to  measure the 
bending of the crane pillar. This is only a principle design 
because  it  would  be  impossible  to  focus  a  laser  beam 
exactly  on  a  linear  CCD-sensor.  With  a  sophisticated 
design of  the light  path (Fig.:  6)  from the source to the 
sensor  it  was  possible  to  realize  a  robust  measurement 
technique. 

Figure 5: Sensor parts and its components
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Figure 6: Schematics of the optical path

The  bending  (f)  is  indirectly  measured  as  value  p.  The 
position p of a laser-point on a CCD-linear-sensor at the 
base of the crane is proportional to the bending f at the top 
of the pillar.
Figure 7 shows the CCD-linear-sensor output signal shifted 
out  by  a  trigger  circuit.  You  can  see  some  disturbing 
signals  from the  light-sources  in  our  laboratory,  but  the 
line-beam of the laser gives a very sharp contour with a 
small width (low pixel number: app. 15 px). 

Figure 7: CCD-sensor-signal (2048 pixels in 10.9 ms)

 



Controller for the counter-moment
Figure 8 gives a good look of the mechanical solution of 
the controlled counter-moment.  On the  right  side  of  the 
middle  axis  there  is  the  stepper-motor  with  its  rotating 
thread-spindle. The screw-nut on it drives the two arms of 
the counter-jib.
The resulting moments are given in the fig. 8.
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Figure 8: Top-view of the model (FG1 = FG2)

An  important  question  is  whether  the  control-element 
works linear or not. The best solution can be found if the 
model  will  be  analysed  exactly.  To  do  this  firstly  the 
scaling factor between real and simulated world must be 
defined (look above).

M: ½ counter-mass
C: rotation-centre
E: linkage-point
EX: x-component
D: screw-nut
b: lever
d: position of the nut
α: lateral angle

Figure 9: One side of the lever mechanics

The  variable  counter-moment  MG is  proportional  to  the 
distance EX.  The analysis of this geometry gives a good 
control structure for the mechanical adjustment. 
The  displacement  of  the  counterweight  for  the  counter-
moment MG is nearly proportional to the distance EX.
The total adjustment range reaches from d=12 cm to 24.6 
cm. The angle between the two backward jibs varies from
α = 84° to 0°.
In the control-region from d=15 cm to 21 cm the counter-
moment MG varies from MG = 26 Nm to 50 Nm. And the 
angle between the two backward jibs varies from α =65° to 
37°. In this region the counter-torque MG changes nearly 
linear with a controlled spindle length d. Look at the blue 
curve in fig. 10. The red curve shows the derivative which 
should be as constant as possible in the control-region.

Figure 10: EX (blue) and derivative of EX (red) over d

Measurement results
The  first  test  measurement  is  the  determination  of  the 
resonance frequency of the system. In fig. 11 the natural 
oscillation frequency is about 1 Hz. The cut-off frequency 
of the feedback system must be lower because otherwise 
the system would be unstable. 

Figure 11: Natural oscillation frequency of the system

If the feedback system is switched off you can measure the 
bending of the pillar in different operating conditions. The 
most important are the lifting and lowering of loads from 
the  ground  at  a  fixed  distance  from  the  pillar  or  the 
movement of the crab which changes the bending of the 
pillar.

Figure 12: Lifting of a load with and without feedback-
control



The lifting of a load from the ground is measured in fig. 
12.  Without  feedback  a  deviation  will  remain.  With 
feedback control the counterweights enlarge their counter-
moments until the pillar is torque-free again. (The different 
curves  in  the  figure  had  a  time  displacement  for  better 
interpretation.)
Last  figure  shows  what  happens  if  the  load  will  be 
transported along the jib. Without feedback there is a linear 
increase of the bending. This will be suppressed in the case 
of feedback control.

Figure 13: Transport of a load with and without 
feedback-control
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Appendix
(Important Equations, related to the abstract)

A  very  important  parameter  concerning  the  security  of 
operation is the following security factor of standing (SF):

( )edge.  tipping therefer to Torques 
 torques tipping
 torquesstanding   SF

Σ
Σ=

The torques operating on the pillar can be computed by:

e  V  M ⋅=

with V = sum of vertical weights and strengths
e = resulting distance from the centre of the rotation-

axis of the crane
The vertical strengths are the sum of:

g321 G  G  G  G  Q  V ++++=

with: Q = mechanical load (weight to handle)
G1 = weight of the load-derrick or jib
G2 = weight of the pillar
G3 = weight of the counterweight-derrick
Gg = counterweight

The resulting torque is: 

4g3311 e  G - e  G - e  G  a  Q  e  V  M ⋅⋅⋅+⋅=⋅=

with: a  = distance between the load and the axis of the 
crane

e1 =  distance  between the  centre  of  gravity  of  the 
load-derrick and the axis

e3 =  distance  between the  centre  of  gravity  of  the 
counter-load-derrick and the axis

e4 =  distance  between the  centre  of  gravity  of  the 
counterweight and the axis
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